
www.manaraa.com

Designing and deploying programming courses:
Strategies, tools, difficulties and pedagogy

Stelios Xinogalos

Published online: 15 July 2014
Springer Science+Business Media New York 2014

Abstract Designing and deploying programming courses is undoubtedly a challenging
task. In this paper, an attempt to analyze important aspects of a sequence of two courses
on imperative-procedural and object-oriented programming in a non-CS majors
Department is made. This analysis is based on a questionnaire filled in by fifty students
in a voluntary basis. The issues of the programming courses that are investigated refer to:
the strategy selected for the introduction to programming; the sequence of the program-
ming techniques and languages taught and the transition from the one to the other;
students’ difficulties with programming in general and with imperative-procedural and
object-oriented programming in specific; the teaching and learning design of both
courses; and the material that students rely on for learning programming. Based on
the analysis of students’ replies on the questionnaire, related work and the instructor’s
experience on teaching the courses, conclusions are drawn regarding all the aforemen-
tioned aspects of designing and deploying programming courses. The main contribution
of the paper is the fact that all the important and interrelated aspects of a sequence of two
programming courses are investigated in conjunction, providing realistic implications
and guidelines for improving the quality and effectiveness of existing programming
courses and designing and deploying new courses. The main results refer to the usage of
a pseudo-language for an introduction to programming, the transition from procedural to
object-oriented programming, the intrinsic difficulties of learning programming, and
practices for a more successful teaching and learning design of programming courses.

Keywords Programming course design . Teaching and learning programming .

Procedural programming . Object-oriented programming . Pedagogy

1 Introduction

Teaching and learning programming is accompanied with many problems, such as
program design, complexity of programming language features and novices’ fragile

Educ Inf Technol (2016) 21:559–588
DOI 10.1007/s10639-014-9341-9

S. Xinogalos (*)
Department of Applied Informatics, School of Information Sciences, University of Macedonia, Egnatia
156 Street, P.O. Box 1591, 54006 Thessaloniki, Greece
e-mail: stelios@uom.edu.gr

www.manaraa.com

knowledge (Robins et al. 2003). In this sense, designing programming courses for
undergraduate students has always been a challenging task (Xinogalos 2012a). Crucial
and informed decisions have to be made from the very beginning at least for the
following issues:

& Selecting a strategy for an initial approach to teaching programming.
& Selecting a programming language that supports the selected strategy and meets the

goals of the course and the program of studies.
& Selecting one or more programming environments.
& Selecting a general teaching and learning design.
& Selecting textbooks and preparing educational material.

Selecting a strategy for an initial approach to teaching programming is the first
decision that has to be made. Several choices are available and some of them have
gained widespread acknowledgment, while alternative ones that have not gained such
widespread acceptance have also been proposed in the literature. The basic strategies
are the imperative-first, functional-first and objects-first, while one of the best-known
alternative approaches is the model-first approach (Bennedsen and Caspersen 2004).
The imperative-first and functional-first strategies were heavily used for decades, while
the objects-first strategy attracted teachers’ attention the last decade. For a long period
of time extended research was carried out regarding the best choice of strategy for an
introduction to programming with main opponents the imperative-first and objects-first
strategy. Although, the results of the relevant studies are contradictory the majority of
researchers seem to agree that students face more difficulties during their transition
from imperative-procedural programming to object-oriented programming and not vice
versa (Decker and Hirshfield 1994; Hadjerrouit 1998; 1999; Tempte 1991; Wick 1995).
Some of the difficulties faced by students - with prior experience on an imperative-
procedural language – during their introduction to OOP are the following: although the
OO problem solving technique is considered more natural, it demands a new way of
thinking that cannot be easily acquired by students with experience on problem solving
with a procedural language (Tempte 1991); students find it difficult to use correctly
OOP concepts and tend to treat methods as procedures, ignoring their role in OOP
(Hadjerrouit 1998; Hadjerrouit 1999). On the other hand, other researchers state that
object-oriented languages demand knowledge of basic programming structures and
characteristics and capabilities prior to using an OOP language (Cooper et al. 2003). It
is obvious that deciding what strategy to rely on for the introduction to programming is
not an easy and straightforward decision. Moreover, in the case of a series of program-
ming courses decisions have to be made regarding the overall strategies, or else what
programming techniques will be taught and with what sequence.

The next step is selecting a programming language that supports the selected
strategy and meets the goals of the course and the program of studies. The available
programming languages are numerous and selecting the one that will be used is a multi-
criteria decision. Researchers have proposed lists of criteria (Parker et al. 2006), key
features (McIver and Conway 1996) and suggestions (Kaplan 2010) for supporting
teachers in selecting the first programming language. One of the most extensive lists of
criteria has been proposed by Parker et al. (2006) and includes the following criteria:
software cost; programming language acceptance in academia; programming language

560 Educ Inf Technol (2016) 21:559–588

www.manaraa.com

industry penetration; software characteristics; student-friendly features; language ped-
agogical features; language intent; language design; language paradigm; language
support and required training; and student experience. McIver and Conway (1996)
go a step beyond these usual considerations proposed as selection criteria and stress out
key features for evaluating a potential teaching language that refer to its syntax,
semantics, error diagnostics and generally its “virtues” as a teaching language.

Selecting one or more programming environments usually follows the selection of
the programming language. Awide variety of programming environments are available
that fall into three main categories: professional programming environments, educa-
tional programming environments (Georgantaki and Retalis 2007) and programming
microworlds (Brusilovsky et al. 1997). Each category has its own advantages and
disadvantages. For example, microworlds are considered by several researchers and
instructors ideal for introducing novices to programming, but on the other hand there
might be some hesitation whether the knowledge acquired in the context of a micro-
world is transferred to the conventional programming language used afterwards.
Educational programming environments are targeted to novices, and just like micro-
worlds, are simple and user-friendly and incorporate various forms of educational
technology: software visualization, program animation, structure editors and so on.
Moreover, educational programming environments can incorporate conventional pro-
gramming languages or a subset of a conventional language. Professional programming
environments are targeted to professionals and offer an abundance of tools that are
useful for a programmer, but at the same time confuse novices.

Another important decision refers to the overall teaching and learning design.
Several questions have to be answered, with the most important ones being the
following: What will the proportion of lecture and lab sessions be? What approaches
will be used for teaching during lectures and labs? What types of assessment of
students’ knowledge will be utilized? How will students be supported in studying
and what material will they be provided with? How can we motivate and engage
students in a programming course?

Finally, textbooks have to be selected and educational material has to be prepared
based on the teaching and learning design of the course. Preparing educational material
usually demands a lot of effort and time and requires continuous evaluation of its
didactical effectiveness. Programming is a cognitively demanding area and although it
is generally important for everyone in today’s knowledge society, students’ interest has
decreased. Preparing high quality educational material requires a deep knowledge of
the extended literature on students’ difficulties and misconceptions, hands-on experi-
ence on teaching programming and continuous search for contemporary innovative
teaching and learning approaches with the aim of motivating and engaging students in
learning.

It is clear that in several occasions the decisions for the aforementioned issues are
influenced by factors not related directly to pedagogy. Available human and technical
resources, as well as instructors’ prior experience on specific programming languages
influence more or less the decisions made.

In this paper, an attempt to study the aforementioned issues regarding the design and
deployment of programming courses from the viewpoint of the teacher and the students
is made. Specifically, students’ replies on a questionnaire regarding the following
aspects of a sequence of two programming courses in a Technology Management

Educ Inf Technol (2016) 21:559–588 561

www.manaraa.com

Department are analyzed: sequence of programming techniques and languages/
environments; general difficulties in learning programming; difficulties with
imperative-procedural and object-oriented programming concepts/constructs; teaching
and learning design of programming courses; educational material. The main goal of
this study was to evaluate the overall design and deployment of a sequence of two
programming courses, as well as students’ difficulties and attitudes in order to provide
insights and guidelines for course designers and teachers struggling to deliver more
successful programming courses. The rest of the paper is organized as follows. In
Section 2, the questions and the methodology of the research carried out are presented.
The results of the questionnaire are analyzed in Section 3. Finally, section 4 concludes
with insights and guidelines for designing and deploying programming courses.

2 The study

In this section important data regarding the study carried out are presented. First of all,
the study took place at a Technology Management Department where studies last for
four academic years. The academic year is divided in two terms, or else in two
semesters lasting 13 weeks each. This department offers two compulsory programming
courses at the 2nd and 3rd semester. The first course is “Computer Programming” and
introduces students to the main programming concepts and constructs using the
imperative-procedural programming technique and C as a programming language.
The second course is “Object-Oriented Design and Programming” and introduces
students to the object oriented programming technique, using Java as the programming
language. The courses were designed back in 2004 when the Department was
established. The sequence of learning units, the programming environments utilized,
the textbooks and the educational material designed and developed were heavily
based on the extended research carried out regarding teaching and learning
programming to novices and especially imperative-procedural programming.
For the “Object-Oriented Design and Programming” course extended research
was also carried out in the context of the course and several reformations were
made in it. Critical information for both courses will be presented in conjunc-
tion with the results of the study.

The study took place during the academic year 2011–2012 when the sequence of the
two programming courses had come to a point where a good overall design seemed to
have been accomplished. In order to validate our beliefs and choices a decision to
investigate students’ opinions was taken. Our goal was to investigate the following
questions:

Question 1: How difficult are for students the introduction to imperative-procedural
programming and the transition to object-oriented programming? How
effective are themeasures taken for supporting students in their difficulties?

Aswill become clear later the sequence of programming techniques was
in a high degree a one-way road. However, based on the extended literature
in the subject we anticipated difficulties both for the introduction to
imperative-procedural programming and afterwards the transition to
OOP. Measures for these difficulties have been taken and our goal was to

562 Educ Inf Technol (2016) 21:559–588

www.manaraa.com

investigate both how severe the aforementioned difficulties and how
effective the measures taken are.

Question 2: What are students’ main difficulties in learning programming indepen-
dently of the programming technique utilized?

Learning programming encompasses various processes, such as de-
signing algorithms and transferring them to a programming language,
learning the syntax of the language, using programming environments
and so on. Our aim was to see what students’ main difficulties in the
context of the specific courses are, in order to see whether students need
further support in some of these higher level processes.

Question 3: How difficult is each imperative-procedural and object-oriented program-
ming concept/construct for students to comprehend?

It is clear that extended literature is nowadays available regarding
students’ difficulties both with imperative-procedural and object-
oriented programming concepts/constructs. As a matter of fact, this
literature was taken into account when designing the courses and the
educational material, as we have already mentioned. So, in this study our
aim was not to investigate what students’ difficulties are, but whether our
choices regarding the time allocated for the various learning units and the
special measures (such as special libraries and educational environments)
taken for dealing with known difficulties were correct.

Question 4: What do students think of the various aspects of the teaching and learning
design applied in the programming courses?

Question 5: What kind of material do students find more helpful for learning
programming?

In order to investigate the aforementioned questions, data were collected from a
specially designed questionnaire consisting of 73 closed-type, Likert-scale questions
(1=not at all, 2=slightly, 3=averagely, 4=much, 5=very much). The questions were
grouped in the following categories:

& Sequence of programming techniques and languages (Table 1: 6 questions).
& General difficulties in learning programming (Table 2: 13 questions).
& Difficulties with imperative-procedural programming concepts/constructs (Table 3:

15 questions).
& Difficulties with OOP concepts/constructs (Table 5: 20 questions).
& Teaching programming (Table 7: 6 questions).
& Learning programming (Table 8: 7 questions).
& Material for study (Table 9: 6 questions).

Several of the questions presented in Tables 2, 3, 8 and 9 were based on the
survey used in a study carried out by Lahtinen et al. (2005) regarding the
difficulties faced by novice programmers. The survey used by Lahtinen et al.
(2005) included 30 items. Some of these items were substituted in our study by
more questions, as described in detail in the corresponding sections. Moreover,
the analysis of students’ replies is presented in the context of the available
literature in the field.

Educ Inf Technol (2016) 21:559–588 563

www.manaraa.com

T
ab

le
1

Se
qu
en
ce

of
pr
og
ra
m
m
in
g
te
ch
ni
qu
es

Q
ue
st
io
n

N
M
ea
n

St
an
da
rd

D
ev
ia
tio

n
M
ed
ia
n

C
on
fi
de
nc
e

N
ot

at
al
l

(%
)

Sl
ig
ht
ly

(%
)

A
ve
ra
ge
ly

(%
)

M
uc
h

(%
)

V
er
y

m
uc
h
(%

)

T
1.
1

H
ow

m
uc
h
di
d
th
e
us
e
of

a
ps
eu
do
-l
an
gu
ag
e
he
lp

yo
u
in

yo
ur

in
tr
od
uc
tio

n
to

pr
og
ra
m
m
in
g?

43
3.
81

1.
3

4
0.
39

7
12

14
28

39

T
1.
2

H
ow

ea
sy

w
as

th
e
co
m
pr
eh
en
si
on

of
th
e
co
rr
es
po
nd
in
g
co
nc
ep
ts
in

th
e
pr
og
ra
m
m
in
g
la
ng
ua
ge

C
?

43
3.
72

0.
83

4
0.
25

0
5

37
39

19

T
1.
3

H
ow

m
uc
h
m
or
e
di
ff
ic
ul
t
do

yo
u
be
lie
ve

th
e
in
tr
od
uc
tio
n
to

pr
og
ra
m
m
in
g

w
ou
ld

be
di
re
ct
ly

w
ith

th
e
pr
og
ra
m
m
in
g
la
ng
ua
ge

C
?

43
3.
7

1.
1

4
0.
33

5
7

30
30

28

T
1.
4

H
ow

di
ff
ic
ul
t
w
as

th
e
in
tr
od
uc
tio

n
to

pr
oc
ed
ur
al
pr
og
ra
m
m
in
g
w
ith

C
?

48
2.
85

0.
99

3
0.
28

10
21

46
19

4

T
1.
5

H
ow

di
ff
ic
ul
t
w
as

th
e
tr
an
si
tio

n
fr
om

pr
oc
ed
ur
al
pr
og
ra
m
m
in
g
(C
)
to

O
O
P
(J
av
a)
?

48
3.
19

1.
04

3
0.
29

4
21

40
23

12

T
1.
6

H
ow

m
uc
h
w
er
e
yo
u
su
pp
or
te
d
in

co
m
pr
eh
en
di
ng

th
e
te
ch
ni
qu
e
an
d

th
e
fu
nd
am

en
ta
l
co
nc
ep
ts
of

O
O
P
by

th
e
us
e
of

ob
je
ct
K
ar
el
at
th
e

be
gi
nn
in
g
of

th
e
O
O
P
co
ur
se
?

48
2.
96

1.
13

3
0.
32

6
38

19
29

8

564 Educ Inf Technol (2016) 21:559–588

www.manaraa.com

The questionnaire was filled in on a voluntary basis after the final exams of the 3rd

semester “Object-Oriented Design and Programming” course based on Java. Students
had also attended the 2nd semester “Computer Programming” course based on C. Fifty
students out of sixty eight that attended the exams, filled in the questionnaire (73.5 % of
students participated in the study). The distribution of the 50 students that participated
in the study based on their semester of studies (within the 8 semester bachelor degree)
is the following: 29 students having finished the 3rd semester, 5 students the 5th

semester, 5 students the 7th semester and 11 students the 9th semester. Several of
these students had failed on the exams of the “Computer Programming” course and
also several had failed on the exams of the “Object-Oriented Design and Programming”
course. Specifically, the 5th semester students had attended the “Object-Oriented
Design and Programming” course the previous academic year, the 7th semester
students two academic years ago and the 9th semester students 3 academic years ago.
All these students had either failed on the final exams or did not take the exams at all.

For each question of each category the following statistics were calculated and are
presented in the corresponding Tables in order to facilitate interested readers in
evaluating the results in alternative ways:

& percentage of student’s replies falling into each one of the 5 possible answers
& mean and standard deviation
& confidence value computed with an alpha of 0.05 that indicates a 95 % confidence

level and provides a confidence interval that is mean±confidence value.

3 Analysis of the survey results

3.1 Sequence of programming techniques and languages

The strategy for the introductory programming course was heavily based on students’
prior experience in procedural programming. The majority of first-year students,
approximately 90 % every year, have prior experience in procedural programming.
Specifically, these students are introduced to the main principles of procedural-
imperative programming (variables, control structures, subprograms and arrays) at their
last year in Secondary Educations and are examined in this material for entering in
Tertiary Education. This introduction to procedural programming takes place with a
simplified subset of Pascal translated in students’ mother tongue. Our hypothesis was
that it would be easier for students to build on their prior knowledge and acquire a
deeper understanding of fundamental programming concepts using a real imperative
programming language. So, the imperative-first (procedural) strategy was selected for
the first programming course.

The selection of the programming language was based on criteria proposed in the
literature - such as acceptance in academia and penetration in industry – and factors
specific to the Departments’ curriculum that gives emphasis on digital systems and
technologies. For the aforementioned reasons, C was considered a good choice for the
introductory programming course. However, it was clear from the very beginning that
C is not the best choice for first programming language in terms of its pedagogical

Educ Inf Technol (2016) 21:559–588 565

www.manaraa.com

features and special attention should be paid on designing the course and supporting
students in comprehending and utilizing the fundamental programming concepts.

The second programming course is based on the object-oriented programming
technique and Java. Object-oriented design is considered important and is utilized in
subsequent courses on analysis and design of Information Systems. Moreover, Java is a
popular language supporting various types of applications, as well as other courses on
the department’s curriculum. For example, Java is used for network programming in the
context of the Distributed Systems course. Students’ prior introduction to programming
with the imperative programming technique and C was expected to make the transition
to OOP quite difficult according to the relevant literature. This was taken into account
and special attention was paid in designing the course. For example, the educational IDE
BlueJ was used and the didactical material was designed taking into account the
extended research on students’ difficulties and misconceptions when introduced to
OOP. Despite this fact, experience and rigorous evaluation on teaching the specific
sequence of courses for two consecutive years showed that the transition from proce-
dural to OOP was difficult for our students. For this reason, we decided to use the
programming microworld objectKarel just in the beginning of the course for a more
straightforward and smoother transition to OOP. In order to evaluate this sequence of
programming techniques and languages as a whole and test our hypotheses we posed
students with the closed type questions presented along with the corresponding results in
Table 1. The most important results are analyzed in the following paragraphs.

Introducing novices to programming with a pseudo-language, instead of a real
programming language, is preferable. As we have already mentioned the vast
majority of the students (86 %) that participated in the study had been introduced to
imperative-procedural programming with a pseudo-language in Secondary Education.
This introduction to programming with the pseudo-language is considered important by
the majority of students. Specifically, students reported the following regarding the
introduction to programming with a pseudo-language:

& 67 % of the students reported that the pseudo-language helped them much or very
much in their introduction to programming (T1.1: Mean=3.81, Std. Dev.=1.3)

& nearly 9 out of 10 students believe that the introduction to programming with a real
programming language, namely C, would be more difficult (T1.3: Mean=3.7, Std.
Dev.=1.1). To be more precise, 58 % of the students believe that this introduction to
programming would be much or very much and 30 % averagely more difficult with
a real programming language instead of the pseudo-language.

& what might be considered even more important is that 58 % of the students believe
that they did not just comprehend easier programming concepts in the pseudo-
language teaching, but also comprehended them with much or very much easiness
in the real programming language afterwards (T1.2: Mean=3.72, Std. Dev.=0.83).

The introduction to procedural programming with C is quite difficult for students (T1.4:
Mean=2.85, Std. Dev.=0.99). Nearly half the students reported that faced an average
level of difficulty (46 %), while one fifth of them (23 %) reported that their introduction
to procedural programming with C was significantly or even very difficult. The

566 Educ Inf Technol (2016) 21:559–588

www.manaraa.com

aforementioned results refer to all the students. The corresponding results for the two
groups of students – with (43 students) or without (5 students) prior experience with a
pseudo-language – are different: the mean for students with prior experience is 2.74 and
for students without prior experience 3.8. This fact confirms the aforementioned results
regarding the support provided to novices when using a pseudo-language for introduc-
ing them to programming.

The transition from procedural programming to OOP seems to be even more difficult than
the introduction to procedural programming (T1.5: Mean=3.19, Std. Dev.=1.04). One
fourth of the students (25 %) reported slight or no difficulty at all; an important number
of students reported an average level of difficulty (40 %); and more than one third of
students (35 %) reported that the transition from procedural programming to OOP was
significantly or even very difficult. The corresponding percentage of students that
reported having significant or very much difficulty with the introduction to procedural
programming was 23 %. This result was not surprising, since several researchers have
found that students face more difficulties during their transition from imperative-
procedural programming to object-oriented programming and not vice versa (Decker
and Hirshfield 1994; Hadjerrouit 1998; 1999; Tempte 1991; Wick 1995). As a matter of
fact, these studies combined with our experience on teaching the specific sequence of
courses for two consecutive years was the reason for using objectKarel at the beginning
of the OOP course for a more straightforward and smoother transition to OOP.

objectKarel helped students comprehend the technique and fundamental concepts of OOP
(T1.6: Mean=2.96, Std. Dev.=1.13). The analysis of students’ replies showed that
objectKarel provided slight or average support for 57 % of the students, while for
37 % of the students it provided a great deal of support. Overall, the vast majority of
students (94 %) reported that objectKarel helped them more or less in their transition
from procedural to OOP and comprehension of OOP concepts. These results support
the corresponding results of another study carried out in the same Department regarding
the transfer of the knowledge acquired in objectKarel to Java afterwards (Xinogalos
2012b):

& 34 out of 35 students stated that the introduction to the main OOP concepts with the
microworld objectKarel helped them comprehend some of the concepts presented
using Java afterwards; and

& the majority of students (65.7 %–23 out of 35 students) stated that they did not have
any difficulty in connecting the concepts taught in the context of the microworld
with the corresponding concepts presented in Java.

3.2 General difficulties in learning programming

Students face several difficulties when learning programming. Some of these difficulties
are specific to the programming technique and even the language used and other difficul-
ties are independent of these factors and as such can be characterized as general difficulties.

With the aim of studying students’ level of difficulty with such general difficulties a
set of questions presented in Table 2 was included in the questionnaire. Some of these

Educ Inf Technol (2016) 21:559–588 567

www.manaraa.com

T
ab

le
2

G
en
er
al
di
ff
ic
ul
tie
s
of

le
ar
ni
ng

pr
og
ra
m
m
in
g

D
if
fi
cu
lty

N
M
ea
n

St
an
da
rd

D
ev
ia
tio

n
M
ed
ia
n

C
on
fi
de
nc
e

N
ot

at
al
l

(%
)

Sl
ig
ht
ly

(%
)

A
ve
ra
ge
ly

(%
)

M
uc
h

(%
)

V
er
y

m
uc
h
(%

)

T
2.
1

In
st
al
lin
g
a
pr
og
ra
m
m
in
g
en
vi
ro
nm

en
t

50
1.
82

0.
96

2
0.
27

48
30

14
8

0

T
2.
2

U
si
ng

pr
og
ra
m
m
in
g
en
vi
ro
nm

en
ts

50
2.
02

0.
87

2
0.
24

34
32

32
2

0

T
2.
3

G
ai
ni
ng

ac
ce
ss

to
co
m
pu
te
rs
/n
et
w
or
ks

50
1.
34

0.
69

1
0.
19

76
16

6
2

0

T
2.
4

U
nd
er
st
an
di
ng

th
e
ro
le
of

pr
og
ra
m
m
in
g
st
ru
ct
ur
es

47
2.
4

0.
9

2
0.
26

14
43

30
13

0

T
2.
5

L
ea
rn
in
g
th
e
pr
og
ra
m
m
in
g
la
ng
ua
ge

sy
nt
ax

49
2.
65

0.
8

3
0.
22

6
37

43
14

0

T
2.
6

L
ea
rn
in
g
th
e
se
m
an
tic
s
of

pr
og
ra
m
m
in
g
st
ru
ct
ur
es
/c
on
ce
pt
s

50
2.
48

0.
86

2
0.
24

12
40

36
12

0

T
2.
7

U
nd
er
st
an
di
ng

th
e
de
fi
ni
tio

n
of

a
pr
ob
le
m

48
2.
56

1.
07

2
0.
3

17
37

19
27

0

T
2.
8

Se
le
ct
in
g
th
e
ap
pr
op
ri
at
e
st
ru
ct
ur
es

(i
f,
if
/e
ls
e,
sw

itc
h,

fo
r,

w
hi
le
,…

)
fo
r
so
lv
in
g
a
pr
ob
le
m

50
2.
22

1.
02

2
0.
28

32
24

34
10

0

T
2.
9

D
ev
el
op
in
g
an

al
go
ri
th
m

fo
r
so
lv
in
g
a
pr
ob
le
m

(i
n
pa
pe
r

an
d
pe
nc
il,

or
co
nc
ep
tu
al
ly
)

50
2.
68

1.
04

3
0.
29

14
30

32
22

2

T
2.
10

T
ra
ns
fe
rr
in
g
th
e
al
go
ri
th
m

to
th
e
pr
og
ra
m
m
in
g
la
ng
ua
ge

50
2.
8

1.
03

3
0.
29

10
30

34
22

4

T
2.
11

D
iv
id
in
g
fu
nc
tio
na
lit
ie
s
in

fu
nc
tio
ns

(C
)
-
cl
as
se
s
(J
av
a)

48
2.
9

1.
02

3
0.
29

9
29

29
31

2

T
2.
12

U
nd
er
st
an
di
ng

co
m
pi
la
tio

n
er
ro
r
m
es
sa
ge
s
an
d
co
rr
ec
tin
g

th
e
co
rr
es
po
nd
in
g
er
ro
rs

50
2.
9

1.
02

3
0.
28

10
26

34
24

6

T
2.
13

Fi
nd
in
g
bu
gs

fr
om

m
y
ow

n
pr
og
ra
m

49
2.
88

1.
11

3
0.
31

12
23

39
18

8

568 Educ Inf Technol (2016) 21:559–588

www.manaraa.com

questions were adopted from the study carried out by Lahtinen et al. (2005) regarding
the difficulties faced by novice programmers, while some more questions reflecting
other important issues were added. Specifically:

& the issues with the codes T2.2, T2.3, T2.5, T2.11, T2.13 were based on the study by
Lahtinen et al. (2005)

& the issue “Designing a program to solve a certain task” was substituted in our study
by the following four issues: “Understanding the definition of a problem” (T2.7);
“Selecting the appropriate structures (if, if/else, switch, for, while,…) for solving a
problem” (T2.8); “Developing an algorithm for solving a problem” (T2.9) and
“Transferring the algorithm to the programming language” (T2.10). These four
issues represent the four distinct steps that we encourage our students to follow
even from the first lessons in order to solve a certain task. Emphasis is given on
devising an algorithm, even conceptually, prior to start coding. The fact that it is
cognitively complex to transfer the mental model or the description of an algorithm
to a programming language has been recorded in the literature (Smith et al. 1994)
and we wanted to investigate whether devising the algorithm in the first place is
more or less difficult.

& “Finding bugs from my own program” (T2.13) was supplemented with
“Understanding compilation error messages and correcting the corresponding er-
rors” (T2.12), since syntax error messages are considered as well a source of
difficulties for novices (Freund and Roberts 1996).

& “Understanding programming structures” was split to “Understanding the role of
the programming structures” (T2.4) in problem solving in general and “Learning
the semantics of programming structures/concepts” (T2.6) that refers mainly to the
way they work during program execution.

The most important results drawn from students’ replies on the part of the question-
naire that referred to the difficulties faced while learning to program, independently of
the technique, can be summarized as follows:

3.2.1 Difficulty 1–developing an algorithm

As we have already mentioned, we always encourage our students to start
solving a programming task by first understanding the definition of a problem
(T2.7: Mean=2.56, Std. dev.=1.07) and developing an algorithm for solving it
(T2.9: Mean=2.68, Std. Dev=1.04), even conceptually. This process is quite
difficult for nearly half the students. Specifically: 19 % of the students reported
that they face average difficulty and 27 % much difficulty in understanding the
definition of the problem in the first place; and 32 % and 22 % respectively in
developing the algorithm.

3.2.2 Difficulty 2–transferring an algorithm to a programming language

Transferring an algorithm to a programming language (T2.10: Mean=2.8, Std. Dev.=
1.03) is considered by students even more difficult than developing the algorithm
(T2.9: Mean=2.68, Std. Dev.=1.04). This might be attributed to:

Educ Inf Technol (2016) 21:559–588 569

www.manaraa.com

& the strictness of programming languages and the underlying notional machine that
students must learn to manipulate (du Boulay 1989). Students do not comprehend
easily that a program has to strictly comply with the rules of the system, and
sometimes they are surprised by the level of detail required in programming mainly
due to the anthropomorphic characteristics they attribute to the system.

& the fact that a step in an algorithm must be translated in a number of statements
& the fact that 57 % of the students, as reported in the questionnaire, face average

(43 %) or much (14 %) difficulty in mastering the syntax of the programming
language (T2.5: Mean=2.65, Std. Dev.=0.8)

& the fact that 48 % of the students, as reported in the questionnaire, face average
(36 %) or much (12 %) difficulty with the semantics (T2.6: Mean=2.48, Std. Dev.=
0.86) of the programming structures/concepts

& students’ difficulties with programming structures that will be analyzed in the
following paragraph.

3.2.3 Difficulty 3–programming structures

Familiarizing with programming structures is another source of difficulties for novice
programmers. Based on students’ replies, it is clear that understanding the role of
programming structures in problem solving in general (T2.4: Mean=2.4, Std.
Dev.=0.9), as well as learning the semantics of programming structures/
concepts (T2.6: Mean=2.48, Std. Dev.=0.86) and selecting the appropriate ones
for solving a problem is not easy (T2.8: Mean=2.22, Std. Dev.=1.02) for
nearly half the students.

Of course the difficulties with learning programming structures, as well as the
notation of the programming language including both its syntax and semantics, are
not new and were recorded back in 1986 by Sprohrer and Soloway and also by Du
Boulay in 1989. From the problems recorded by Spohrer and Soloway (1986) as
sources of difficulties in comprehending the semantics of programming structures the
most prominent one based on our experience in teaching programming courses is the
human interpreter problem: novices assume that the system will translate the structures
in the same way they translate them.

3.2.4 Difficulty 4–modularization

Dividing the functionalities of a program in functions when using the procedural
technique or classes when using the OOP technique (T2.11: Mean=2.9, Std. Dev.=
1.02) is one of the most important difficulties for novices. Only 38 % of the students
reported having no or slight difficulty, while one third of students (33 %) reported
having great difficulty with dividing the functionalities of a program in functions/
classes. Of course, experience has shown that students face difficulties not only with
dividing the functionalities of a program in functions/classes, but even in
implementing, combining and using them when they are specified by the teacher in
the first place.

This is in accordance with the study by Spohrer and Soloway (1986), which found
that most of students’ errors are due to difficulties in combining plans, or else parts of a

570 Educ Inf Technol (2016) 21:559–588

www.manaraa.com

program. An exhaustive list of the so called plan composition problems were recorded
by Spohrer and Soloway (1986) and are the following:

& summarization problem: complex combinations of plans in a main function
overlooking potential dependencies in supporting functions.

& optimization problem
& previous-experience problem or plan pollution problem: existing plans are used

incorrectly in new situations that seem relevant to students.
& specification problem: abstract plans developed by novices are not correctly adjust-

ed in new situations.
& natural-language problem: plans in natural language are matched in the program-

ming language used, leading to errors.
& interpretation problem: existing knowledge for goals and plans is used when

interpreting the definition of a problem, ignoring requirements that are not explicitly
mentioned or for which plans for fulfilling them cannot be easily recalled.

& unexpected cases problem: novices write programs that work for the most common
situations and not all the potential situations.

& boundary problem
& cognitive load problem: results in overlooking small but important parts of plans or

interactions between them.

These plan composition problems appear more or less in introductory programming
courses and teachers should take care to device appropriate didactical situations for
stressing such issues to students and supporting them in dealing with the corresponding
problems they cause.

3.2.5 Difficulty 5–debugging

Debugging programs, along with modularization, is one of the most difficult
issues in programming both in terms of understanding compilation error mes-
sages (T2.12: Mean=2.9, Std. Dev.=1.02) and finding bugs (T2.13: Mean=
2.88, Std. Dev.=1.11), as reported by students. What seems surprising is that
understanding compilation error messages that refer mainly to syntax errors is
equally difficult for students with finding and fixing logic errors. Are compi-
lation messages so incomprehensible for novices? In some environments maybe,
but in BlueJ error messages are quite user-friendly and moreover in objectKarel
they are expressed in natural language without using any codes or advanced
terminology. A possible explanation might be the result of an older study based
on objectKarel. In the context of this study, students’ successive compiled
versions of several programs developed by them in groups of two were
recorded using the history of compilations feature of objectKarel and analyzed,
along with video recorded using Camtasia recorder (Xinogalos et al. 2006).
This study showed that several students behave irrational when the system
reports error messages and recompile their programs instantly without having
made any change, or even make changes in random places in their program – a
strong indication that for some time students do not even read carefully error
messages!

Educ Inf Technol (2016) 21:559–588 571

www.manaraa.com

In conclusion, modularization and debugging (difficulties 4 and 5) seem to be the
greatest sources of difficulties for novice programmers, while algorithm development
and implementation in a programming language are following (difficulties 1 and 2).
What is interesting is that some students consider the implementation of an algorithm in
a programming language more (even slightly) difficult than its development in the first
place. This is due to difficulties with programming structures and not with the pro-
gramming environments utilized that cause slight difficulties to students. The afore-
mentioned difficulties (1, 2, 4 and 5) were recorded as the most difficult issues in
programming with this or a slightly different form in the study by Lahtinen et al. (2005)
as well. Specifically, Lahtinen et al. (2005) recorded the following issues: understand-
ing how to design a program to solve a certain task, dividing functionality into
procedures and finding bugs from their own programs. As Lahtinen et al. (2005, p.
16) state “these are all issues where the student needs to understand larger entities of
the program instead of just some details about it”.

3.3 Difficulties with imperative-procedural programming concepts/constructs

Extended research has been carried out on students’ difficulties and misconceptions
with imperative-procedural programming concepts/constructs for several decades.
Most of the studies were based on Basic and Pascal and recorded various difficulties
and misconceptions for fundamental programming concepts. Pane and Myers (1996)
have studied misconceptions that cause errors with variables, while Samurcay (1989)
has categorized variables in different types and has recorded related difficulties.
Variables are categorized based on distinct uses of the assignment operator, the
functional meaning of variables and their processing in the context of loops. Sleeman
et al. (1988) and Putman et al. (1989) have studied misconceptions and difficulties with
data input and assignment, which of course relate to variables as well. Difficulties,
conceptual models and misconceptions regarding flow of control for control structures
(selection and repetition structures) have also been studied by several researchers (Hoc
1989; Kahney 1989; Kessler and Anderson 1989; Putman et al. 1989; Rogalski and
Samurcay 1990; Sleeman et al. 1988). The results of the aforementioned studies were
taken into account in devising educational material for the course. Students’ difficulties
are summarized in Table 3 and analyzed in the following paragraphs.

Pointers are one of the most difficult programming concepts, causing the majority of
students much (46 %) or very much (12 %) difficulty, as recorded in their replies. This
is in accordance with the study by Lahtinen et al. (2005). As a matter of fact, the two
studies gave the same results (T3.13: Mean=3.5, Std. Dev.=0.97; Mean=3.59, Std.
Dev.=1.04 in (Lahtinen et al. 2005)). Pointers are an abstract concept without corre-
sponding examples from students’ everyday life and as such cognitively complex to
understand (Lahtinen et al. 2005). Students reported facing difficulties in manipulating
text files as well (T3.14: Mean=3.32, Std. Dev.=0.98). However, this was expected
since manipulation of text files requires the usage of pointers and moreover language
libraries.

Arrays are reported as the next more difficult programming concept for students
(T3.12: Mean=3.06, Std. Dev.=1.24). Data structures are well known to cause diffi-
culties to students. Although arrays are one of the simplest data structures they are still
not easy for students to use in the context of a program. Examples from everyday life

572 Educ Inf Technol (2016) 21:559–588

www.manaraa.com

T
ab

le
3

D
if
fi
cu
lti
es

w
ith

im
pe
ra
tiv

e-
pr
oc
ed
ur
al
pr
og
ra
m
m
in
g
co
nc
ep
ts

Pr
og
ra
m
m
in
g
co
nc
ep
t/c
on
st
ru
ct

N
M
ea
n

St
an
da
rd

D
ev
ia
tio

n
M
ed
ia
n

C
on
fi
de
nc
e

N
ot

at
al
l

(%
)

Sl
ig
ht
ly

(%
)

A
ve
ra
ge
ly

(%
)

M
uc
h

(%
)

V
er
y
m
uc
h

(%
)

T
3.
1

V
ar
ia
bl
es

(l
if
e
tim

e,
sc
op
e)

50
1.
9

0.
81

2
0.
22

34
46

16
4

0

T
3.
2

D
at
a
ty
pe
s
(i
nt
,f
lo
at
,c
ha
r,…

)
50

1.
88

1.
02

2
0.
55

42
40

10
4

4

T
3.
3

D
at
a
in
pu
t
w
ith

R
ob
er
t’s

lib
ra
ri
es

(x
=
G
et
In
te
ge
r(
)…

)
50

2.
08

0.
75

2
0.
21

22
50

26
2

0

T
3.
4

D
at
a
in
pu
t
w
ith

C
fu
nc
tio
ns

(s
ca
nf
(“
%
d”
,&

x)
)

47
2.
79

1.
04

3
0.
3

13
25

34
26

2

T
3.
5

O
ut
pu
t

50
2

0.
9

2
0.
25

38
30

26
6

0

T
3.
6

Se
le
ct
io
n
st
ru
ct
ur
es

(i
f,
if
/e
ls
e,
sw

itc
h)

50
2.
1

1
2

0.
28

36
28

26
10

0

T
3.
7

R
ep
et
iti
on

st
ru
ct
ur
es

(f
or
,w

hi
le
)

50
2.
12

1.
04

2
0.
29

36
28

24
12

0

T
3.
8

D
ef
in
iti
on

of
fu
nc
tio

ns
50

2.
6

0.
97

3
0.
27

18
18

52
10

2

T
3.
9

C
al
lin

g
fu
nc
tio

ns
50

2.
56

1.
01

3
0.
28

16
32

34
16

2

T
3.
10

Pa
ra
m
et
er
s:
de
cl
ar
in
g
pa
ra
m
et
er
s

49
2.
57

1.
04

3
0.
29

20
21

43
14

2

T
3.
11

Pa
ra
m
et
er
s:
us
in
g
th
e
ap
pr
op
ri
at
e
ar
gu
m
en
ts

50
2.
66

1.
04

3
0.
29

18
20

42
18

2

T
3.
12

A
rr
ay
s

50
3.
06

1.
24

3
0.
34

12
24

22
30

12

T
3.
13

Po
in
te
rs

50
3.
5

0.
97

4
0.
27

2
16

24
46

12

T
3.
14

M
an
ip
ul
at
in
g
te
xt

fi
le
s

50
3.
32

0.
98

3.
5

0.
27

6
12

32
44

6

T
3.
15

U
si
ng

la
ng
ua
ge

lib
ra
ri
es

50
2.
94

1.
06

3
0.
29

10
22

38
24

6

Educ Inf Technol (2016) 21:559–588 573

www.manaraa.com

exist and students seem to comprehend the concept of arrays, but they have problems in
implementing programs with arrays. Based on several years of experience on assessing
students’ assignments and exam solutions with arrays the most important difficulties
related to arrays seem to be the following: using the correct indexes for traversing
arrays, especially two dimensional; making calculations per row and even worst per
column (for example, mean per row); using arrays as parameters and so on.

Using language libraries is reported as another common source of difficulties for
novices (T3.15: Mean=2.94, Std. Dev.=1.06). Searching in language libraries, finding
the appropriate function and using it correctly are difficult for novices. The idea to use
specially designed libraries for novices that hide the complexity of language constructs
and library functions seems to be a good idea. A characteristic example is the use of
Professor’s Eric Robert (Stanford University) GetType() functions described in his
textbook “The Art and Science of C” for data input instead of the scanf(“format”,
&variablename) C function. Students reported that they find more difficult the use of
the scanf (T3.4: Mean=2.79, Std. Dev.=1.04) instead of the GetType function (T3.3:
Mean=2.08, Std. Dev.=0.75). More than one fourth of students (28 %) report that they
have much of very much difficulty on using the scanf function in contrast with just 2 %
with the GetType functions that do not make reference to memory addresses, while
format is more easily defined by the Type part of the function.

As recorded in the previous section, dividing the functionalities of a program in
functions when using the procedural technique (T2.11: Mean=2.9, Std. Dev.=1.02)
was reported as one of the most important difficulties for novices. However, students
face difficulties even when the decomposition of a problem is provided and they have
to define a subprogram for each defined sub-problem. Specifically, more than half the
students reported that they face difficulties with defining functions (T3.8: 64 %),
declaring their parameters (T3.10: 59 %) and calling functions (T3.9: 52 %) using
the appropriate arguments (T3.11: 62 %).

Finally, the majority of students state that face less difficulties – in descending order –
with repetition structures, selection structures, output, data types and variables. These
programming concepts/constructs have been presented in detail to the majority of our
students during their last year studies in Secondary education and this is considered to be
the most important reason for dealing with them more easily. However, regarding
variables it must be stressed out that students most probably answered having in mind
declaration of variables and overlooked the life time and scope aspects. If they were
asked more explicitly to express their difficulty with variables’ scope and life time most
probably different results would be recorded.

Generally speaking the aforementioned results are in compliance with the author’s
experience on teaching the Introductory Computer Programming course at a
Technology Management Department for several years. Based on this experience the
schedule and course outline presented in Table 4 has been adopted the last years,
allocating more time to concepts/constructs that are more difficult for students to
comprehend.

3.4 Difficulties with OOP concepts/constructs

Several studies have been carried out with the aim of recording students’ difficulties
and misconceptions (Holland et al. 1997; Carter and Fowler 1998; Ragonis and Ben-

574 Educ Inf Technol (2016) 21:559–588

www.manaraa.com

Ari 2005; Garner et al. 2005; Thomasson et al. 2006; Sanders and Thomas 2007;
Sanders et al. 2008), and less often students’ conceptions (Eckerdal and Thuné 2005;
Teif and Hazzan 2006) when introduced to OOP. Common difficulties and misconcep-
tions recorded in the literature include the following: object/class conflation (Holland
et al. 1997; Garner et al. 2005; Sanders et al. 2008; Sanders and Thomas 2007); object/
variable conflation (Carter and Fowler 1998); object/record conflation (Holland et al.
1997); class/collection of objects conflation and various variations (Ragonis and Ben-
Ari 2005; Thomasson et al. 2006; Sanders and Thomas 2007; Teif and Hazzan
2006); class-object as set-subset or class-object as whole-part misconception
(Teif and Hazzan 2006); difficulties with modeling (Thomasson et al. 2006;
Sanders and Thomas 2007; Sanders et al. 2008; Eckerdal and Thuné 2005);
distinction between static and dynamic aspects of OO (Sanders et al. 2008;
Ragonis and Ben-Ari 2005); difficulties with abstraction techniques including
inheritance, polymorphism, overriding, abstract methods and interfaces (Garner
et al. 2005; Or-Bach and Lavy 2004); difficulties with accessor and mutator
methods (Garner et al. 2005); and constructors (Fleury 2000). As was the case
with the first programming course, the aforementioned studies (and many more)
were taken into account in devising educational material for the second course
on object-oriented design and programming. Students’ difficulties are summa-
rized in Table 5 and analyzed in the following paragraphs.

Abstraction techniques in OOP are considered to be one of its most important
strengths. However, as both teachers’ experience and students’ replies in the question-
naire show, abstraction techniques cause great difficulties in students. Students reported
that they face the following difficulties in ascending order:

Table 4 The contents of the Computer Programming course

Week Learning Unit Programming concepts/constructs

1 Introduction programming languages and environments
development, compilation, debugging and execution of a program

2 Sequential structure variables (life time, scope), data types, data input with Robert’s libraries,
assignment, expressions, output

3 Selection structures if, if/else, if/else if, switch, nested selection structures

4 Repetition structures for, while, nested selection and repetition structures

5, 6 Functions abstraction and modularization, defining and calling functions and
procedures, parameters and arguments

7 Arrays one and two dimensional arrays, basic operations with arrays

8 Arrays and
Functions

arrays as parameters

9, 10 Pointers addresses as data, pointer operators, call by reference with the use
of pointers

11 Characters and
strings

manipulation of characters with the ctype.h library, strings as arrays of
characters and pointers, manipulation of strings with the string.h
library

12, 13 Text files character or line manipulation of text files, formatted input/output from/to
text files

Educ Inf Technol (2016) 21:559–588 575

www.manaraa.com

T
ab

le
5

D
if
fi
cu
lti
es

w
ith

O
O
P
co
nc
ep
ts

Pr
og
ra
m
m
in
g
co
nc
ep
t/c
on
st
ru
ct

N
M
ea
n

St
an
da
rd

D
ev
ia
tio
n

M
ed
ia
n

C
on
fi
de
nc
e

N
ot

at
al
l

(%
)

Sl
ig
ht
ly

(%
)

A
ve
ra
ge
ly

(%
)

M
uc
h

(%
)

V
er
y
m
uc
h

(%
)

T
5.
1

O
bj
ec
t

50
1.
9

0.
84

2
0.
23

36
42

18
4

0

T
5.
2

C
la
ss

50
1.
96

0.
92

2
0.
26

38
34

22
6

0

T
5.
3

Fi
el
ds

(r
ol
e,
sc
op
e,
ac
ce
ss
)

50
2.
06

1.
08

2
0.
3

38
30

24
4

4

T
5.
4

C
on
st
ru
ct
or

50
2

1.
12

2
0.
31

46
20

26
4

4

T
5.
5

M
et
ho
ds

49
2.
16

1.
05

2
0.
29

33
28

33
2

4

T
5.
6

A
cc
es
so
r
m
et
ho
ds

(g
et
te
rs
)

50
1.
96

1.
09

2
0.
3

46
22

26
2

4

T
5.
7

M
ut
at
or

m
et
ho
ds

(s
et
te
rs
)

49
1.
98

1.
09

2
0.
31

45
22

27
2

4

T
5.
8

A
cc
es
s
m
od
if
ie
rs
(p
ub
lic
,p

ri
va
te
,p

ro
te
ct
ed
)

48
2.
15

1.
07

2
0.
3

31
38

21
6

4

T
5.
9

O
bj
ec
t
in
te
ra
ct
io
n
(i
.e
.a
n
ob
je
ct
co
nt
ai
ni
ng

ot
he
r
ob
je
ct
s)

50
2.
66

1.
12

2
0.
31

12
40

26
14

8

T
5.
10

In
te
rn
al
m
et
ho
d
ca
ll

50
2.
8

1.
07

3
0.
3

10
32

32
20

6

T
5.
11

E
xt
er
na
l
m
et
ho
d
ca
ll
(d
ot

no
ta
tio

n)
50

2.
9

1.
07

3
0.
3

10
26

34
24

6

T
5.
12

O
bj
ec
t
co
lle
ct
io
ns

(i
.e
.A

rr
ay
L
is
t)
:
co
m
pr
eh
en
di
ng

its
fu
nc
tio

na
lit
y

50
3.
32

1.
19

4
0.
33

8
20

18
40

14

T
5.
13

O
bj
ec
t
co
lle
ct
io
ns

(i
.e
.A

rr
ay
L
is
t)
:
w
ri
tin

g
co
de

fo
r
m
an
ip
ul
at
in
g
it

50
3.
38

1.
16

4
0.
32

6
20

20
38

16

T
5.
14

U
si
ng

cl
as
s
lib
ra
ri
es

50
3.
02

1.
06

3
0.
29

6
26

38
20

10

T
5.
15

In
he
ri
ta
nc
e:
ex
te
nd
in
g
an

ex
is
tin
g
cl
as
s

47
2.
85

1.
4

3
0.
4

24
19

21
21

15

T
5.
16

In
he
ri
ta
nc
e:
re
fa
ct
or
in
g
a
pr
oj
ec
t
fo
r
im

pr
ov
in
g
its

st
ru
ct
ur
e
w
ith

in
he
ri
ta
nc
e

49
3.
08

1.
24

3
0.
35

12
20

29
25

14

T
5.
17

Po
ly
m
or
ph
is
m

49
3.
45

1.
12

4
0.
31

6
12

31
33

18

T
5.
18

O
ve
rr
id
in
g

46
3.
67

1.
06

4
0.
31

4
7

30
35

24

T
5.
19

A
bs
tr
ac
t
cl
as
se
s

49
3.
53

1.
04

4
0.
29

6
6

33
39

16

T
5.
20

In
te
rf
ac
es

49
3.
57

1.
02

4
0.
29

4
10

27
43

16

576 Educ Inf Technol (2016) 21:559–588

www.manaraa.com

& 36 % of the students face much or very much difficulty in using inheritance for
extending an existing user defined or library class (T5.15: Mean=2.85, Std. Dev.=1.4).

& even more students (39 %) face much or very much difficulty in refactoring
a project for improving its structure using inheritance (T5.16: Mean=3.08,
Std. Dev.=1.24).

& half the students (51 %) face much or very much difficulty in using polymorphism
for further improving the structure of a project using inheritance (T5.17: Mean=
3.45, Std. Dev.=1.12).

& more than half the students (55 %) face much or very much difficulty in using
abstract classes (T5.19: Mean=3.53, Std. Dev.=1.04). Students cannot easily
comprehend the true meaning of abstract classes and they tend to declare a
superclass as an abstract class only in cases where they have to declare an abstract
method in order for their project to compile.

& the majority of students (59 %) face much or very much difficulty with interfaces
(T5.20: Mean=3.57, Std. Dev.=1.02). Interfaces seem to be a very abstract concept
for students to comprehend. Students do not easily understand what the value of a
class that contains just declaration of abstract methods and no implementation is.

& the majority of students (59 %) face much or very much difficulty in overriding
inherited methods (T5.18: Mean=3.67, Std. Dev.=1.06).

Object collections, such as ArrayLists, were reported as the next more difficult concept
for the majority of students (54 %), both in terms of comprehending their functionality
(T5.12: Mean=3.32, Std. Dev.=1.19) and writing code for manipulating them (T5.13:
Mean=3.38, Std. Dev.=1.16). However, this was more or less expected due to the wide
known difficulties with data structures in general, as well as students’ difficulties with
using class libraries that was recorded in this study also (T5.14: Mean=3.02, Std. Dev.=
1.06). As a matter of fact, a study that was carried out in the context of the same course
showed that many difficulties are not related to ArrayLists in particular, but in key OOP
concepts that students must have mastered prior to their exposure to object collections
(Xinogalos 2010). More specifically, the following key concepts have to be deeply
comprehended prior to the presentation of ArrayLists: object types and not just primitive
types can be used as local variables, parameters and return types; classes can have fields/
attributes of some object type (collaborative classes); access modifiers; accessor methods
and especially their actual usefulness for accessing private fields outside their class;
internal and external method calls.

Some of the aforementioned key concepts that are important for comprehending and
manipulating ArrayList object collections are also difficult for students. The survey
results showed that interacting objects (T5.9: Mean=2.66, Std. Dev.=1.12), internal
(T5.10: Mean=2.8, Std. Dev.=1.07) and external method calls (T5.11: Mean=2.9, Std.
Dev.=1.07) are the concepts that follow ArrayLists in terms of difficulty. Methods
(T5.5: Mean=2.16, Std. Dev.=1.05), access modifiers (T5.8: Mean=2.15, Std. Dev.=
1.07) and fields (T5.3: Mean=2.08, Std. Dev.=1.08) also cause average difficulty in
several students.

Generally speaking the aforementioned results are in compliance with the author’s
experience on teaching the Object-Oriented Design and Programming course at a
Technology Management Department for several years. Based on this experience the
schedule and course outline presented in Table 6 has been adopted the last years.

Educ Inf Technol (2016) 21:559–588 577

www.manaraa.com

3.5 Teaching programming

The overall teaching and learning design for both courses is based on the same rationale
that is summarized in the following paragraphs, while students’ assessment for the
support provided by each aspect of this learning design is presented in Table 7:

& The concepts presented in the course are organized in clear learning objects, or else
units. The material is organized in a series of lectures and corresponding labs, with
each week of teaching having specific and transparent didactical aims acknowl-
edged to students at the beginning of the semester. Students can find all the
didactical material used – slides, programming leaflets, programs and so on –
organized in different folders that can be accessed through the University’s
Course Management System. Students assess this organization as much (60 %) or
very much (32 %) important (T7.1: Mean=4.2, Std. Dev.=0.73).

& The last few years an attempt to use practical activities sheets during lectures and
decreasing theoretical presentations has been made, in order to engage students and
deal with the low attendance rates in lectures (optional), in comparison with the

Table 6 The contents of the Object Oriented Design and Programming course

Week Learning Unit Programming concepts/constructs

1 Basic concepts in
objectKarel

objects, classes and inheritance in objectKarel

2 Advanced concepts in
objectKarel

multilevel inheritance, polymorphism and overriding

3 Class definition fields, constructors, accessor and mutator methods, return statements,
parameters (formal, actual), variable scope/lifetime, conditional state-
ments

4 Static methods instance vs. static/class methods, the main method, executing without BlueJ,
byte code, Java Virtual Machine

5 Object interaction abstraction, modularization, objects creating objects, multiple constructors
(overloading), class diagram, object diagram, primitive and object types,
internal/external method call

6, 7 Objects collections flexible size collections (ArrayList), fixed size collections (array), generic
classes, iterators, loops (while, for, for-each)

8 Class libraries Java standard class library, reading documentation, interface vs.
implementation of a class, exploring and using classes (Scanner,
Random, HashMap, HashSet)

9 Inheritance inheritance, superclass, subclass, inheritance hierarchy, superclass
constructor, subtyping, substitution, autoboxing

10 Polymorphism Polymorphism, overriding: static/dynamic type, dynamic method lookup,
super (in methods), protected access

11 Abstract classes and
interfaces

abstract classes and interfaces

12 Simple application analysis, design and implementation of a simple application

13 Introduction in GUI
programming

main elements of a GUI in Java

578 Educ Inf Technol (2016) 21:559–588

www.manaraa.com

T
ab

le
7

Su
pp
or
t
pr
ov
id
ed

by
va
ri
ou
s
te
ac
hi
ng

as
pe
ct
s

Su
pp
or
t
pr
ov
id
ed

by
…

N
M
ea
n

St
an
da
rd

D
ev
ia
tio
n

M
ed
ia
n

C
on
fi
de
nc
e

N
ot

at
al
l

(%
)

Sl
ig
ht
ly

(%
)

A
ve
ra
ge
ly

(%
)

M
uc
h

(%
)

V
er
y

m
uc
h
(%

)

T
7.
1

O
rg
an
iz
in
g
th
e
m
at
er
ia
l
in

a
se
ri
es

of
le
ct
ur
es

an
d
co
rr
es
po
nd
in
g
la
bs

50
4.
2

0.
73

4
0.
20

2
0

6
60

32

T
7.
2

U
si
ng

pr
ac
tic
al
ac
tiv
iti
es

sh
ee
ts
du
ri
ng

le
ct
ur
es

an
d
de
cr
ea
si
ng

th
eo
re
tic
al
pr
es
en
ta
tio

ns
50

4.
28

0.
83

4
0.
23

2
2

6
46

44

T
7.
3

So
lv
in
g
ex
er
ci
se
s
at
la
bs

50
4.
68

0.
59

5
0.
16

0
2

0
26

72

T
7.
4

A
ss
ig
ni
ng

w
ee
kl
y
ho
m
ew

or
k
fo
r
ea
ch

le
ct
ur
e/
la
b

50
4.
18

0.
8

4
0.
22

0
2

18
40

40

T
7.
5

A
nn
ou
nc
in
g
th
e
so
lu
tio

ns
of

w
ee
kl
y
as
si
gn
m
en
ts
in
st
an
tly

af
te
r

th
e
su
bm

is
si
on

de
ad
lin
e

50
4.
4

0.
95

5
0.
26

2
4

8
24

62

T
7.
6

W
ri
tin

g
m
id
-s
em

es
te
r
ex
am

s
50

4.
2

0.
86

4
0.
24

0
4

16
36

44

Educ Inf Technol (2016) 21:559–588 579

www.manaraa.com

very high attendance rates in lab sessions (compulsory). Active-learning is currently
attracting instructors’ and researchers’ interest and is highly appreciated by the
students, as recorded in this study (T7.2: Mean=4.28, Std. Dev.=0.83). However,
we must mention that preparing such material is quite challenging, as active-
learning activities are time consuming and if they are not carefully designed they
might not attract students’ attention or fail to communicate the intended concepts.
Moreover, in the introductory programming course there is much pressure in terms
of the time available for familiarizing novices and dealing with their difficulties
regarding various aspects of programming (du Boulay 1989): orientation – what is
programming all about; the notional machine and its relation with the physical
machine; notation; structures; and pragmatics.

& Hands-on activities are considered necessary for acquiring problem solving skills
and programming capabilities. For this reason, both courses include programming
exercises carried out at labs and as homework. Students also realize this fact and
consider solving exercises at labs and as homework as important. Specifically, nearly
all the students (98 %) consider solving exercises at labs as much or very much
important (T7.3: Mean=4.68, Std. Dev.=0.59), constituting this aspect of the course
as the most important of all. Weekly homework is considered as much or very much
important by 80 % of the students (T7.4: Mean=4.18, Std. Dev.=0.8), while
announcing the solutions instantly after the submission deadline of the assignments
is perceived as even more important by students (T7.5: Mean=4.4, Std. Dev.=0.95).

& Another important aspect of the learning design is the mid-semester exams that
count - as is the case for homework - for the final grade. Mid-semester exams keep
students vigilant and give instructors the ability to check students’ achievements
and make appropriate interventions for dealing with their difficulties before it is too
late. As is the case with homework, although students have to work a lot during the
semester so as to be prepared for the exams they realize that this is necessary for
such a cognitively demanding discipline. Four out of five students believe that
writing mid-semester exams provides much (36 %) or very much (44 %) support in
learning programming (T7.6: Mean=4.2, Std. Dev.=0.86).

An important role in realizing the aforementioned learning design is played by the
University’s Learning Management System (LMS) or to be more precise Course
Management System. This system is used for enhancing the learning experience of
students by providing them access to the educational material that is organized in
lectures (T7.1, T7.2), assigning weekly assignments (T7.4) and announcing their
solutions (T7.5).

3.6 Learning programming

In this section, students’ perceptions regarding the support provided in learning pro-
gramming by various alternatives that can be used for applying the aforementioned
teaching and learning design are analyzed. As can be seen in Table 8:

& Students believe that they learn to program mostly during practicing programming.
The majority of students believe that learn programming mostly during writing

580 Educ Inf Technol (2016) 21:559–588

www.manaraa.com

T
ab

le
8

St
ud
en
ts
’
pe
rc
ep
tio

ns
re
ga
rd
in
g
va
ri
ou
s
w
ay
s
of

le
ar
ni
ng

pr
og
ra
m
m
in
g

I
le
ar
n
pr
og
ra
m
m
in
g
du
ri
ng

…
N

M
ea
n

St
an
da
rd

D
ev
ia
tio

n
M
ed
ia
n

C
on
fi
de
nc
e

N
ot

at
al
l

(%
)

Sl
ig
ht
ly

(%
)

A
ve
ra
ge
ly

(%
)

M
uc
h

(%
)

V
er
y

m
uc
h
(%

)

T
8.
1

L
ec
tu
re
s

50
3.
26

0.
85

3
0.
24

2
14

46
32

6

T
8.
2

C
ar
ry
in
g
ou
t
ac
tiv
iti
es

in
le
ct
ur
es

49
3.
63

0.
86

4
0.
24

0
14

19
57

10

T
8.
3

Pr
ob
le
m

so
lv
in
g
pe
rs
on
al
ly

in
la
bs

50
3.
96

0.
9

4
0.
25

0
6

24
38

32

T
8.
4

Pr
ob
le
m

so
lv
in
g
co
lla
bo
ra
tiv
el
y
in

la
bs

50
4.
06

1.
02

4
0.
28

0
10

18
28

44

T
8.
5

St
ud
yi
ng

al
on
e

50
3.
5

1.
15

4
0.
32

4
18

24
32

22

T
8.
6

C
ar
ry
in
g
ou
t
pr
og
ra
m
m
in
g
as
si
gn
m
en
ts
al
on
e

50
3.
82

1.
1

4
0.
3

2
12

22
30

34

T
8.
7

C
ar
ry
in
g
ou
t
pr
og
ra
m
m
in
g
as
si
gn
m
en
ts
w
ith

cl
as
sm

at
es

50
3.
82

1
4

0.
28

0
12

24
34

30

Educ Inf Technol (2016) 21:559–588 581

www.manaraa.com

programs either personally (T8.3: Mean=3.96, Std. Dev.=0.9) or collaboratively
(T8.4: Mean=4.06, Std. Dev.=1.02) in lab sessions, and carrying out programming
assignments as homework either personally (T8.6: Mean=3.82, Std. Dev.=1.1) or
with classmates (T8.7: Mean=3.82, Std. Dev.=1). An important aspect that must be
stressed out is the fact that several students find it motivating writing programs
collaboratively with classmates. This is applied in labs, but it is offered as a choice
for homework as well, as long as students inform the instructor for the teams
formed. Of course, technological solutions for distributed pair programming are
nowadays available at least for Java programming and their incorporation is
believed to deliver several advantages, such as more balanced contribution to the
development of a program and ability to check students’ participation
(Tsompanoudi et al. 2013).

& Lectures seem to motivate students (T8.1: Mean=3.26, Std. Dev.=0.85) less than
labs and this explains the smaller attendance rate in lectures in comparison to labs,
which however are compulsory. However, carrying out activities in lectures is
considered by students to support them in learning programming (T8.2: Mean=
3.63, Std. Dev.=0.86). The majority of students (67 %) state that much or very
much help is provided by carrying out activities during lectures and this clearly
indicates that special attention should be paid by instructors in preparing relevant
material and making lectures more engaging for students.

3.7 Material for study

Students learn programming mainly in the context of programming exercises carried out
either in labs or as homework, as recorded in their replies to the relevant questions
analyzed in the previous paragraphs. The material used for such exercises and assign-
ments (T9.4: Mean=4.06, Std. Dev.=0.82) together with the exemplary solutions
provided (T9.5: Mean=4.22, Std. Dev.=0.82) is also highly appreciated by the majority
of students (78 % and 84 % respectively) as the main material for studying. Lab and
homework programming exercises are considered to provide more support than other
programs provided to students for studying (T9.3: Mean=3.16, Std. Dev.=1.13), prob-
ably because of their involvement, time and effort devoted in developing them. When it
comes to the necessary material used for studying the theoretical aspects of programming
concepts, students seem to prefer mostly the presentations prepared by the instructor and
used in lectures (T9.2: Mean=3.8, Std. Dev.=0.88) and less the course textbooks (T9.1:
Mean=3.02, Std. Dev.=1.15) no matter how good they are. These results clearly indicate
that instructors have to invest a lot of effort and time for preparing high quality material
both for theoretical and practical aspects of a programming course (Table 9).

4 Conclusions

Designing and deploying programming courses is undoubtedly a challenging task. In
this paper, an attempt to analyze important aspects of a sequence of two courses on
imperative-procedural and object-oriented programming in a non-CS majors
Department is made. This analysis is based on a questionnaire filled in by fifty students

582 Educ Inf Technol (2016) 21:559–588

www.manaraa.com

T
ab

le
9

Su
pp
or
t
pr
ov
id
ed

to
st
ud
en
ts
by

di
ff
er
en
t
ki
nd
s
of

m
at
er
ia
l
fo
r
st
ud
yi
ng

Su
pp
or
t
pr
ov
id
ed

by
…

N
M
ea
n

St
an
da
rd

D
ev
ia
tio
n

M
ed
ia
n

C
on
fi
de
nc
e

N
ot

at
al
l
(%

)
Sl
ig
ht
ly

(%
)

A
ve
ra
ge
ly

(%
)

M
uc
h

(%
)

V
er
y

m
uc
h
(%

)

T
9.
1

C
ou
rs
e
te
xt
bo
ok

50
3.
02

1.
15

3
0.
32

6
32

30
18

14

T
9.
2

L
ec
tu
re

pr
es
en
ta
tio

ns
50

3.
8

0.
88

4
0.
24

2
2

32
42

22

T
9.
3

Pr
og
ra
m
s

50
3.
16

1.
13

3
0.
31

8
16

32
32

12

T
9.
4

E
xe
rc
is
es
/a
ss
ig
nm

en
ts

50
4.
06

0.
82

4
0.
23

0
4

18
46

32

T
9.
5

E
xe
m
pl
ar
y
so
lu
tio
ns

of
w
ee
kl
y
as
si
gn
m
en
ts

50
4.
22

0.
82

4
0.
23

0
4

12
42

42

T
9.
6

M
at
er
ia
l
I
fo
un
d
in

th
e
w
eb

48
2.
04

1.
07

2
0.
3

38
35

15
10

2

Educ Inf Technol (2016) 21:559–588 583

www.manaraa.com

in a voluntary basis. The issues of the programming courses that are analyzed refer to:
the strategy selected for the introduction to programming; the sequence of the pro-
gramming techniques and languages taught and the transition from the one to the other;
students’ difficulties with programming in general and with imperative-procedural and
object-oriented programming in specific; the teaching and learning design of both
courses; and the material used for learning programming. Based on the analysis of the
questionnaire’s results the following conclusions can be drawn.

First of all, it seems that the introduction to programming using a pseudo-language
is a good choice. Pseudo-languages are less strict than conventional programming
languages and help students concentrate on the most important aspects, which are
without doubt the algorithmic/programming concepts/constructs and not their syntax.
Students that had been introduced to programming with a pseudo-language, during
their last year of studies in Secondary Education, stated that they were significantly
supported in understanding the programming concepts/constructs when taught imper-
ative programming at University with C. Nowadays, several environments are freely
available for supporting an introduction to programming using pseudo-languages, or even
flowcharts. A comparative analysis of flowchart-based programming environments that
incorporate structure editors for developing algorithms easily, program animation features
for running flowcharts in a step by step manner and abilities of automatically generating
the corresponding source code is provided in (Xinogalos 2013).

The transition from imperative-procedural to object-oriented programming is not
easy for students. As a matter of fact the results of the questionnaire showed that this
transition is considered by students even more difficult than their introduction to
programming. Experience on teaching both courses has shown that students find it
difficult to change their mindset and utilize classes and objects instead of functions as
the main concepts for devising a solution to a problem. The author’s and instructor’s
belief is that students have to be supported both during their introduction to program-
ming and their transition from one programming technique to another, no matter which
technique is used first. In our case, students are supported on their introduction to
programming with the imperative language C mainly by using Prof. Roberts’ libraries
that hide some subtleties of the C programming language (Roberts 1994). Students are
also supported by adopting an algorithmic way of presenting programming concepts
(i.e. using a pseudo-language) and solving programming tasks, prior to presenting them
in C. For the transition to object-oriented programming we use the programming
microworld objectKarel for a hands-on, playful and clear presentation of fundamental
OOP concepts prior to using Java and the educational programming environment
BlueJ. Based on the questionnaire results it is apparent that students evaluate positively
the sequence of techniques and languages taught and the measures taken for supporting
them in their transition from the one technique to the other.

Learning programming is accompanied with several intrinsic difficulties, which
cannot be dealt with easily. The sequence of courses presented in this paper was
designed taking into account the research carried out the last decades regarding the
teaching and learning of programming and the accompanying difficulties. So, the aim
of this study was definitely not to investigate what students’ difficulties with program-
ming are, but to investigate what difficulties insist to appear and whether the whole
design of the courses and the learning units were appropriately distributed. Based on
the questionnaire results, the most important students’ general difficulties not related to

584 Educ Inf Technol (2016) 21:559–588

www.manaraa.com

a specific programming technique are: developing an algorithm for solving a problem,
dividing its functionalities in functions/classes, transferring it to the programming
language and debugging it both in terms of syntax and logical errors. A course on
algorithms, which is missing from the program of studies, would definitely help
students in acquiring problem solving capabilities. Pointers, arrays, language libraries
and functions are the most challenging concepts for students in the context of the first
imperative-procedural programming course, while in the object-oriented course the
most challenging concepts refer to abstraction techniques – inheritance, polymorphism,
overriding, abstract classes and interfaces – and object collections. Knowing students’
difficulties is important for the instructor in order to distribute appropriately the
available time to the various learning units and devise special didactical situations for
supporting students in dealing with the underlying difficulties.

Moreover, special attention has to be paid in the overall teaching and learning design
of a programming course. As indicated by the results of the questionnaire, as well as the
instructor’s experience, it is important for students to:

& Organize the material in clear learning objects, taught in a series of lectures and
corresponding labs with each week of teaching having specific and transparent
didactical aims acknowledged in advance to students.

& Utilize active-learning activities in lectures for attracting students’ attention and
dealing with low attendance rates in lectures, in contrast with labs that have a more
hands-on nature.

& Carry out programming exercises at labs, since such exercises are considered by
students as a very important aspect of a programming course. Programming
exercises assigned as homework, although time-consuming and demanding are also
considered important. Students believe that they learn to program mostly during
practicing programming either personally or collaboratively. In the later case, the
advantages provided by distributed pair programming should be considered by
instructors. Also, a technological solution for an automatic assessment of students’
programs is important both for providing immediate feedback to students and
saving time for instructors.

& Carry out mid-semester exams for monitoring students’ progress and making
appropriate interventions for dealing with their difficulties in time. Both homework
and mid-semester exams count for the final grade.

& Use an LMS for organizing and managing the course, keeping students informed
for the learning design, providing easy access to the educational material from
anywhere, enhancing communication and collaboration and providing guidance to
students. An LMS is of vital importance for applying the aforementioned teaching
and learning design, engaging students’ and instructors in the whole process and
providing capabilities for blended learning.

Finally, when it comes to the material used by students for studying it is clear that
various resources are and should be available for students. However, students rely
heavily on the material prepared by instructors and used in lectures and labs for
studying. Consequently, it is very important for instructors to prepare high quality
presentations, lab exercises, assignments and exemplary solutions in order to support
students in learning programming.

Educ Inf Technol (2016) 21:559–588 585

www.manaraa.com

The conclusions drawn from the study presented in this paper can be used as
guidelines for improving the quality and effectiveness of existing programming
courses, as well as for designing and deploying new programming courses. A limitation
of the study is certainly the fact that it was based on a sample of fifty students and so its
conclusions need to be further confirmed. However, another important fact is that these
results comply with the instructor’s experience on teaching and reforming the two
programming courses for several years. This study was completed by chance during a
time when the Department of Technology Management (the Department the study took
place) was merged with a Department of Applied Informatics and the establishment of
a new School of Information Sciences, with three times more students entering the new
Department each academic year. Hopefully, this will give us the chance to investigate
further the issue and validate the results of this study in a different context.

References

Bennedsen, J. & Caspersen, M. (2004), Programming in Context – A Model-First Approach to CS1,
Proceedings of SIGCSE’04, 477–481

Brusilovsky, P., Calabrese, E., Hvorecky, J., Kouchnirenko, A., & Miller, P. (1997). Mini-languages: Away to
learn programming principles. Education and Information Technologies, 2, 65–83.

Carter, J., & Fowler, A. (1998). Object oriented students? SIGCSE Bulletin, 30(3), 271.
Cooper, S., Dann, W. and Pausch, R. (2003). Teaching objects-first in introductory computer science. In

Proceedings of the 34th SIGCSE technical symposium on Computer science education (SIGCSE’03).
ACM, New York, NY, USA, 191–195.

Decker, R., & Hirshfield, S. (1994). The Top 10 ReasonsWhy Object-Oriented Programming Can’t Be Taught
In CS1. ACM SIGCSE Bulletin, 26(1), 51–55.

Du Boulay, B. 1989. Some Difficulties of Learning to Program, Studying The Novice Programmer. E.
Soloway & J. Sprohrer (Eds.), Lawrence Erlbaum Associates, 283–300.

Eckerdal, A. & Thuné, M. (2005). Novice Java programmers’ conceptions of “object” and “class”, and
variation theory. In Proceedings of the 10th annual SIGCSE conference on Innovation and technology in
computer science education (ITiCSE '05). ACM, New York, NY, USA, 89–93.

Fleury, A. (2000). Programming in Java: student-constructed rules. ACM SIGCSE Bulletin, 32(1), 197–201.
Freund, S. N., & Roberts, E. S. (1996). THETIS: An ANSI C programming environment designed for

introductory use. ACM SIGSCE Bulletin, 28(1), 300–304.
Garner, S., Haden, P. and Robins, A. (2005). My program is correct but it doesn’t run: a preliminary

investigation of novice programmers' problems. In Proc. of the 7th Australasian conference on
Computing education - Volume 42 (ACE '05), Alison Young and Denise Tolhurst (Eds.), Vol. 42.
Australian Computer Society, Inc., Darlinghurst, Australia, Australia, 173–180.

Georgantaki, S., & Retalis, S. (2007). Using Educational Tools for Teaching Object Oriented Design and
Programming. Journal of Information Technology Impact, 7(2), 111–130.

Hadjerrouit, S. (1998). A Constructivist Framework for Integrating the Java Paradigm into the Undergraduate
Curriculum. ACM SIGCSE Bulletin, 30(3), 105–107.

Hadjerrouit, S. (1999). A constructivist approach to object-oriented design and programming. ACM SIGCSE
Bulletin, 31(3), 171–174.

Hoc, J. (1989) Do We Really Have Conditionals In Our Brains? In Studying The Novice Programmer,
Soloway, E., Sprohrer, J. (Eds.), Lawrence Erlbaum Associates, 179–190.

Holland, S., Griffiths, R., & Woodman, M. (1997). Avoiding object misconceptions. ACM SIGCSE Bulletin,
29(1), 131–134.

Kahney, H. (1989) What Do Novice Programmers Know About Recursion? In Studying The Novice
Programmer, Soloway, E., Sprohrer, J. (Eds.), Lawrence Erlbaum Associates, pp. 209–228.

Kaplan, R. M. 2010. Choosing a first programming language. In Proceedings of the 2010 ACM conference on
Information technology education (SIGITE '10). ACM, New York, NY, USA, 163–164. DOI=10.1145/
1867651.1867697 http://doi.acm.org/10.1145/1867651.1867697

586 Educ Inf Technol (2016) 21:559–588

http://dx.doi.org/10.1145/1867651.1867697
http://dx.doi.org/10.1145/1867651.1867697
http://dx.doi.org/10.1145/1867651.1867697

www.manaraa.com

Kessler, C. & Anderson, J. (1989) Learning Flow of Control: Recursive and Iterative Procedures. In Studying
The Novice Programmer, Soloway, E., Sprohrer, J. (Eds.), Lawrence Erlbaum Associates, pp. 229–260.

Lahtinen, E., Ala-Mutka, K. & Jarvinen, H. 2005. A Study of Difficulties of Novice Programmers. In:
Innovation and Technology in Computer Science Education 2005, 14–18

McIver, L. and Conway, D. 1996. Seven Deadly Sins of Introductory Programming Language Design. In
Proceedings of the 1996 International Conference on Software Engineering: Education and Practice (SE:
EP '96) (SEEP '96). IEEE Computer Society, Washington, DC, USA, 309-.

Or-Bach, R., & Lavy, I. (2004). Cognitive activities of abstraction in object orientation: an empirical study.
ACM SIGCSE Bulletin, 36(2), 82–86.

Pane, J. F. and Myers, B.A. (1996) Usability Issues in the Design of Novice Programming Systems, Technical
Report CMU-CS-96-132, School of Computer Science, Carnegie Mellon University (also available as:
Human-Computer Interaction Institute Technical Report CMU-HCII-96-101).

Parker, K., Chao, J. T., Ottawa, T., & Chang, J. (2006). A Formal Language Selection Process for Introductory
Programming Courses. Journal of Information Technology Education, 5, 133–151.

Putman, R., Sleeman, D., Baxter, J. & Kuspa, L. (1989) A Summary Of Misconceptions Of High-School
BASIC Programmers. In Studying The Novice Programmer, Soloway, E., Sprohrer, J. (Eds.), Lawrence
Erlbaum Associates, pp. 301–314.

Ragonis, N., & Ben-Ari, M. (2005). A Long-Term Investigation of the Comprehension of OOP Concepts by
Novices. International Journal of Computer Science Education, 15(3), 203–221.

Roberts, E. (1994). The Art and Science of C: A Library Based Introduction to Computer Science. Prentice: Hall.
Robins, A., Rountree, J., & Rountree, N. (2003). Learning and Teaching Programming: A review and

Discussion. Computer Science Education, 13(2), 137–172.
Rogalski, J. & Samurcay, R. (1990) Acquisition of Programming Knowledge and Skills. In Psychology of

Programming, Hoc, J., Green, T., Samurcay, R. and Gilmore, D. (Eds.), Academic Press, pp. 157–174.
Samurcay, R. (1989) The Concept of Variable in Programming: its Meaning and Use in Problem-Solving by

Novice Programmers. In Studying The Novice Programmer, Soloway, E. and Sprohrer, J. (Eds.),
Lawrence Erlbaum Associates, pp. 161–178.

Sanders, K. & Thomas, L. (2007). Checklists for grading object-oriented CS1 programs: concepts and
misconceptions. In Proc. of the 12th annual SIGCSE conference on Innovation and Technology in
Computer Science Education (ITiCSE '07). ACM, New York, NY, USA, 166–170.

Sanders, K., Boustedt, J., Eckerdal, A., McCartney, R., Moström, J., Thomas, L. & Zander, C. (2008). Student
understanding of object-oriented programming as expressed in concept maps. In Proc. 39th SIGCSE
technical symposium onComputer science education (SIGCSE '08). ACM,NewYork, NY, USA, 332–336.

Sleeman, D., Putman, R., Baxter, J. & Kuspa, L. (1988) An Introductory Pascal Class: A Case Study Of
Students’ Errors. In Teaching and Learning Computer Programming, Mayer, R. (Ed.), Lawrence Erlbaum
Associates, pp. 237–258.

Smith, D. C., Cypher, A., & Sprohrer, J. (1994). KIDSIM: Programming Agents Without a Programming
Language. Communications of the ACM, 37(7), 55–67.

Spohrer, J. C., & Soloway, E. (1986). Novice Mistakes: Are the Folk Wisdoms Correct? Communications of
the ACM, 29(7), 624–632.

Teif, M. & Hazzan, O. (2006). Partonomy and taxonomy in object-oriented thinking: junior high school
students’ perceptions of object-oriented basic concepts. In Working group reports on ITiCSE on
Innovation and technology in computer science education (ITiCSE-WGR '06). ACM, New York, NY,
USA, 55–60.

Tempte, M C. (1991), Let’s Begin Introducing the Object-Oriented Paradigm, ACM SIGCSE Bulletin, Vol. 23,
No. I, 338–342.

Thomasson, B., Ratcliffe, M. & Thomas, L. (2006). Identifying novice difficulties in object oriented design.
SIGCSE Bull. 38, 3 (June 2006), 28–32.

Tsompanoudi, D., Satratzemi, M. and Xinogalos, S. (2013). Exploring the effects of Collaboration Scripts
embedded in a Distributed Pair Programming System. Proceedings of the 18th ACM ITiCSE Conference,
1–3 July 2013, Canterbury UK, 225–230.

Wick, M. (1995). On Using C++ and Object-Orientation in CS1: the Message is still more important than the
Medium. ACM SIGCSE Bulletin, 27(1), 322–326.

Xinogalos, S. (2010). Difficulties with Collection Classes in Java – The Case of the ArrayList Collection.
Proceedings of the 2nd International Conference on Computer Supported Education (CSEDU), 7–10
April, Valencia, Spain, 120–125.

Xinogalos, S. (2012a). Programming Techniques and Environments in a Technology Management
Department. Proceedings of the 5th Balkan Conference in Informatics (BCI 2012), 16–20 September,
Novi Sad, Serbia, ACM, New York, NY, USA, 136–141.

Educ Inf Technol (2016) 21:559–588 587

www.manaraa.com

Xinogalos, S. (2012b). An Evaluation of Knowledge Transfer from Microworld Programming to
Conventional Programming. Journal of Educational Computing Research, 47, Number 3/2012, 251–277.

Xinogalos, S. (2013). Using Flowchart-based Programming Environments for Simplifying Programming and
Software Engineering Processes. In Proceedings of 4th IEEE EDUCON Conference, Berlin, Germany,
13-15 March 2013, IEEE Press, 1313–1322.

Xinogalos, S., Satratzemi, M. & Dagdilelis, V. (2006). An Introduction to objectoriented programming with a
didactic microworld: objectKarel. Computers & Education, 47(2):148–171.

588 Educ Inf Technol (2016) 21:559–588

www.manaraa.com

Reproduced with permission of the copyright owner. Further reproduction prohibited without
permission.

	c.10639_2014_Article_9341.pdf
	Designing and deploying programming courses: Strategies, tools, difficulties and pedagogy
	Abstract
	Introduction
	The study
	Analysis of the survey results
	Sequence of programming techniques and languages
	General difficulties in learning programming
	Difficulty 1–developing an algorithm
	Difficulty 2–transferring an algorithm to a programming language
	Difficulty 3–programming structures
	Difficulty 4–modularization
	Difficulty 5–debugging

	Difficulties with imperative-procedural programming concepts/constructs
	Difficulties with OOP concepts/constructs
	Teaching programming
	Learning programming
	Material for study

	Conclusions
	References

